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1. Preface

In my PhD dissertation, | summarize the scientific activities conducted during my four years of
doctoral studies, focusing on animal social network analyses and their application and modeling
approaches using various modeling and statistical methods typical of this scientific field. As a
generalist, | present the network modeling techniques learned during these four years across four

completely different model species.

In the first third of the thesis, | will provide a methodological (Chapters 2.2-2.3), statistical
(Chapters 2.4, 3.1-3.7), and literature overview (Chapter 2.5) of animal social networks, with
particular attention to the terminology of network approaches and the composition of network
models. | conducted a systematic literature review (Chapter 2.5) to categorize animal social
network research studies and identify which taxonomic groups are represented in the literature,

highlighting the significance and diversity of this scientific topic today.

In the second third, I introduce the various methodological variations of network analysis on four
different model species (Chapter 3.8), independent of location, time, and other factors, using three
different statistical methods. | explore the general questions of animal social network research by
addressing a common query: What do the networks look like in these animal groups under different
environmental conditions? The selection of these species was subjective and based on my interests
and passion, data availability, collaborative opportunities, and fieldwork capacities over the four

years.

Finally, in the third part of my work, | compare the network properties of the four species, searching

for trends and characteristic patterns among them.

The dissertation was primarily written in the first-person singular and focused on the results
obtained from studies published (or in progress) either solely by myself under supervision or
occasionally as a corresponding author. However, each of these works was accomplished through
teamwork with colleagues and supervisors, for which | would like to express my gratitude. The

results could not have been achieved without our collective efforts.



2. Introduction

Recognizing that addressing questions about animal behavior often leads to endless discussions
due to diverse perspectives and approaches, | narrow my focus to a specific aspect of this topic to
demonstrate how generalist ecologists adopting a network perspective, can approach the study of
social behavior in animals. In this chapter, | begin with a brief overview of social behavior in
animals and then narrow my focus to the establishment of direct or indirect connections between
them. Following these introductory subchapters, I demonstrate how these animal connections can
be quantified using a network approach to achieve the main objective of this dissertation: modeling
animal social networks. Here, | establish the basic mathematical terms, methods, and tools to
facilitate a clearer understanding of this scientific topic. Before concluding this chapter and
addressing my thesis points, | aim to position animal social network studies within the broader
context of scientific literature for the reader. To achieve this, | conducted my systematic review of
published studies on this topic to contextualize my case studies and aid the reader in following my

line of reasoning.

2.1. Social behavior in animals

Social behavior characterizes a wide variety of animal species, accompanied by associated
population dynamics (Krebs, 1978). Understanding the evolution of sociality is one of the central
questions in behavioral and evolutionary biology (Wilson, 1975; Maynard Smith and Szathmary,
1995). Sociality serves critical functions affecting fitness. For instance, animals with higher social
ranks often exhibit greater reproductive success within populations (Armitage, 1986; Pusey and
Packer, 1997). In several species, the social environment influences the physiological reactions of
individuals. For example, the existence of familiar conspecifics mitigates the impact of stress in
rats, mice, goats, and monkeys (House et al., 1988; Seeman and McEwen, 1996). Social dynamics
are also connected to decreased levels of basal cortisol (Sapolsky et al., 1997), and the
characteristics of closer social bonds between males and females reduce stress responses in
baboons (Beehner et al., 2005; Engh et al., 2006). Sociality may be influential beyond the
intraspecific level to the biogeographic patterns by influencing species movement between islands
in mixed-species bird flocks (Martinez et al., 2023). Furthermore, social behavior can be essential
for long-term survival in predator-prey dynamics, encompassing defensive and hunting strategies

(Fryxell et al., 2007). While specific behavioral interactions are readily observable like male dog



fighting events or territory marking (Gosling et al., 1982), others are more indirect and complex to
define like affiliative connections (for example, friendship or cooperation) between animals
(Seyfarth and Cheney, 2012). The intensity and characteristics of these behavioral interactions
hinge upon dynamic environmental conditions (e.g., migratory bird behavior influenced by
seasonal changes). To comprehend these nuances, undertaking extensive and prolonged
observations becomes essential, allowing for discernment of disparities both among and within
species or populations. For instance, the reproductive rates of the Great Tit (Parus major) were
explored in urban and rural habitats within the same region (Seress and Liker, 2015). While some
factors shaping group behavior, such as temperature, territory size, and available water, can be
assessed using relatively straightforward methods like visual observations, GPS locations, and
databases, others prove more challenging to quantify and standardize. These factors include sex
ratio, predation pressure, food availability dynamics, and effective population size. In my thesis, |
aimed to investigate the predictors and determinants of network structures in four animal species.
This facilitated a comparative understanding of social network properties across the phylogenetic
tree, highlighting the importance of measuring diversity in animal social behavior for a better

understanding of adaptation and social evolution processes.

2.2. Animal social relation types

Defining relationships between individuals can be challenging due to the wide variety of
connections, requiring various approaches to differentiate among them. One helpful approach can
be to define relationships between individuals using ethograms in different species. Ethograms are
the most common catalogs with behavioral data in ethnological research, which contain the
complete set of animal patterns (Brockmann, 1994). After decades of over-emphasizing dominance
interactions, ethograms are becoming now increasingly richer for a number of species, making

more complete and holistic (e.g. multinetwork) approaches possible.

In this thesis, | use the terminology of Social Network Analysis to describe social structure
(Wasserman and Faust, 1994). Therefore, animal social relations between individuals can be

distinguished into two types: associations and interactions (Croft, 2008).

Associations have been quantified by many authors based on observations of spatial proximity

between individuals, and they can be measured using two approaches. First, within the population,



some subgroups are defined by an individual attribute. This approach is called group membership,
and members are associated (Croft, 2008). Second, the definition of association can be based on
space use. In this case, all individuals are associated within the same territory, habitat, or area, with

particular attention to setting the spatial scale (Croft, 2008).

Interactions can be categorized into agonistic interactions and affiliative interactions. Agonistic
interactions are frequently used synonymously with aggressive interactions. It includes every
behavior that is intended to harm another animal (intra-and interspecifically), for example, threats,
displays, retreats, and fights (Young et al., 2022). Affiliative interaction can also display a wide
range of types. It is often defined as a friendly connection among individuals (Jasso and Nekaris,
2022). Affiliative behavior is commonly observed primarily among birds and mammals. The
specific forms of affiliative interactions may differ across species. It can be observed as grooming
in mammals, allopreening in birds, playing interactions, and sharing food with other individuals
(Jasso and Nekaris, 2022). These associations and interactions shape the whole group dynamics
and function in a population and determine the characteristics of the information flow between
individuals (Sueur, 2012).

2.3. Measuring animal behavior

Researchers study behavior in various ways and for various reasons. One of these reasons is the
concept of sociality. When several individuals live together, multiple interaction patterns may
develop, resulting in complex social structures and relationships (Wey et al., 2008). One of the
basic measures of social patterns, for example, the mating system or population size, showed many
proofs of sociality (Brown and Brown, 1996). These approaches aim only at the individuals and
only indirectly focus on their interactions; therefore, some homogeneity of effect on the given
population is implicitly assumed. The network approach to studying animal behavior will provide
an opportunity to study social complexity in greater detail by measuring interactions directly (Wey
et al., 2008). One of the best benefits of the animal social network approach is that we can study
the populations at different levels (i.e., individual, group, and population) and for different
connection types (e.g., sexual, aggressive, affiliative, cooperative, etc.) (Krause et al., 2009).
Connections between individuals create a social environment at the group level, which selects
behavioral attributes at the individual level (Krause et al., 2009). The universal methods of social

networks allow us to study systems ranging from social insects to primates (Krause et al., 2009).



When examining the diverse array of approaches and methodologies applied to questions
concerning animal social networks, an inevitable question arises: Are these approaches
comparable, and if so, which approach is the most precise or which one should be used under
specific circumstances? It is important to remember the inherent limitations of animal social
networks. To synchronize methods between different species and populations is nearly impossible.
Observing finer scales of group dynamics reveals more issues in comparing social characteristics

among species, populations, or groups.

2.4. Introduction to animal social networks

2.4.1. Graph theory

A graph is defined by a set of nodes, a set of edges and a relation. Nodes represent entities (e.g.
individuals), and edges link nodes with the observed relation. The arrangement of nodes and edges
determines the structure of the graph. In 1736, Euler's demonstration of the insolvability of the
"Konigsberg bridge problem" served as an essential moment of graph theory. He demonstrated that
where land (graph nodes) connected by bridges (graph edges) have an odd number of degrees, it is
impossible to traverse the area by using each bridge only once. Throughout my work, the terms
"graph™ and "network" will be used interchangeably (Dale, 2017). Graph theory has since expanded
into various interdisciplinary fields, including epidemiology (Meyers, 2007), social sciences
(Wasserman and Faust, 1994), ecology (Bascompte and Jordano, 2007), and animal behavior by

using Social Network Analysis tools (Wey et al., 2008).

2.4.2. Social Network Analysis (SNA)

Social network analysis (SNA) methods originated from social and behavioral sciences
(Wasserman and Faust, 1994). In social networks, the nodes represent the social entities, such as
an individual, a group, or a habitat, depending on the question being asked. The edges symbolize
the social ties or relationships between these entities (Wasserman and Faust, 1994). Networks can
be unweighted (binary) or weighted when a number is associated with the edge. The edges can be
undirected (symmetric connections) or directed (actor and receiver). SNA quantifies interaction
data using edge lists as a simple table with columns like actor, receiver, edge weight, etc., or

adjacency matrices, where the row and column names are the same, and the matrix entries are the



edge weights (Krause et al., 2015). The properties of individuals are called node attributes, and the
elements of a network can be used as network configurations (edge, dyad, triad, degree, etc.) (Silk
and Fisher, 2017). While in most cases, the edges represent the same type of interaction between
two individuals, networks can be constructed as multilevel networks when the set of edges has
multiple definitions by interaction types between the same set of individuals (Krause et al., 2015).
As more data are collected continuously in time, time-aggregated or temporal networks are
becoming more frequent (Blonder et al., 2012). The terms "network structure™ and "network

topology" are used here synonymously (Krause et al., 2015).

2.4.3. Network topology levels

At the outset of the network study, the scale of the measures has to be selected. These scales focus
on different topology levels of a network (Croft, 2008). This chapter is only introductory, the
formulas and definitions of all presented indices will be discussed in detail in the Methods chapter.

Node-based measures, also known as local or individual measures, pertain to the network
characteristics of an individual within a given social network. The primary objective is to determine
the social role of a member through the use of local network indices (Borgatti et al., 2013). Among
these indices, centrality calculations are predominant, and there exist many centrality indices to
choose from. The main family of centrality measures includes (1) path-following measures, among
which the most commonly employed is Degree (D) in the context of unweighted and undirected
networks (Wasserman and Faust, 1994). For directed but unweighted networks, the Out-Degree
(OD) and In-Degree (ID) become relevant, where the prefixes "out-" and "in-" denote the number
of edges originating from and leading to a node, respectively (Krause et al., 2015). The underlying
concept behind all degree measures is that the nodes with the highest number of connections are
considered the most central within the network. A closely related group of measures is the node;
reach, which quantifies the number of nodes that are located at a distance i away from a specific
node (Krause et al., 2015). Additional path-following node centrality measures encompass
Betweenness Centrality, Closeness Centrality, Flow Centrality and Information Centrality. In
essence, these measures tally the paths between pairs of nodes that traverse through the node of
interest (Wey et al., 2008). Second is the (2) matrix-derived measure method. In this category, two
prominent ones are Katz Centrality and Eigenvector Centrality (Borgatti et al., 2013). Katz

Centrality evaluates the influence of a node based on the total number of paths that connect it to
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other nodes, considering both direct connections and indirect connections through intermediate
nodes. Eigenvector centrality, on the other hand, assigns importance to a node based on the
centrality of its neighbors, emphasizing connections to well-connected nodes (Borgatti et al., 2013).
These measures have found extensive use in analyzing social networks to understand the

significance and influence of individual nodes within the network (Borgatti et al., 2013).

In the case of intermediate measures, two familiar indices are used to describe the subgrouping
within networks. The Clustering Coefficient is used to localize network areas of high and low
density (Watts and Strogatz, 1998). The Transitivity or Global Clustering Coefficient (CC) is
measured by triad network configurations. If the network's Transitivity is higher (more transitive)
the information flow is more ,barrier-free” through the network (Borgatti et al., 2013).
Cliquishness tells us how the network can be divided into cliques (cohesive subgroups), which are
sets of nodes directly connected (Wey et al., 2008).

In network-level measures (also called global network measures), the Network Centralization
Index (NCI), is used to show how centralized the networks are. Highly centralized networks look
more like a star, where some nodes have significantly more edges than others, forming a center
(Borgatti et al., 2013). Furthermore, to measure the ,,speed” of information between nodes, the
Average Path Length (APL) can be calculated (Borgatti et al., 2013). These path lengths can be
interpreted as the time required to pass information from one randomly chosen individual to another
(Borgatti et al., 2013).

The network measures and indices basically describe the direct effects of interactions between
nodes. However, in the 19th century, some studies dealt with the significance of indirect effects on
ecology (Wootton, 1994). In trophic networks, it is crucial to determine the spread of the effect of
one species to another, both directly and indirectly. Describing positional (also called topological)
importance in the network can be useful by calculating Topological Importance (T1) and Weighted
Topological Importance (WI) indices to locate keystone species and quantify these indirect effects,
as well as the influence of a species on another within the group (Jordan etal., 2006). These indices
are defined for the undirected networks but can be measured by weighted or unweighted networks
as well (Jordan et al., 2006).

The terms of topological importance of trophic networks can be useful in animal social network

measures in many ways. In animal social networks the most commonly used indices to determine
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network positions were introduced above. However, there is no study of animal social networks
that used TI or WI indices to calculate the indirect effects of social interactions in a group of
animals. Topological Importance can be crucial, for example, in agonistic networks to locate
dominant individuals who lead the group or in the affiliative networks to see which individuals are

essential in cooperating or able to take care of the others.

There are more local, intermediate, and global networks used, but this thesis focuses only on those,
that were used in the case studies: Network Centralization Index, Average Path Length, and
Coefficient of Variation of Topological Importance at the global network level, and Transitivity in
the intermediate network level, and Out-Degree, In-Degree, Out-Strength, In- Strength,

Topological and Weighted Topological Importance indices in the local network level (Table 2).

In this thesis, my objective is to use topological indices to describe the network properties of

multiple animal species (see Chapter 2.6).

2.5. Classification of animal social network studies

This subchapter focuses on the documentation of animal social networks from the years 1997 to
2023. The purpose of this review was to identify the observed and modeled species using various
types of social networks, without delving into detailed calculations or specific questions. I
established four general categories to filter the vast volume of published papers on this topic to

help follow the logical structure of the thesis. These categories are described in the following:

(1) Describing the observed properties of social networks, such as indices, positions, dynamics,
and more.

(2) Exploring the relationship between various environmental conditions and social network
topology, including seasonal change, infection threats, habitat change, and every condition,
which cannot be related to the individuals of the given groups.

(3) Effects of individual behavioral characteristics (moving behavior, foraging habits, caste
behavior, etc.) on social network properties.

(4) Statistical predictors (individual’s sex, age, size, etc.) of social network positions and structural

characteristics.

All categories are somehow related to the properties of network topology, which is the main focus

of this thesis, along with case studies. To gather relevant papers, | used the Web of Science online
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database, with the search of animal and social network keywords. The steps of the filtering process

are summarized in Figure 1.

Keyword search

4945 papers Non-relevant scientific

topics & review articles

> & duplicates
3829
Records after non -relevant topics excluded r ~\
1116 papers
‘ =3 Papers excluded based
\ on abstracts
S A 825
Papers eligible based on title &
abstract k Y,
291
‘ > Papers excluded based
on full text:
Papers includedin the review: not about specific
251 species or social
\ network:40 y
Social network Individual biometrics — Individual behavior- Environmental conditions -
description: social network: social network: social network:
10 114 36 91

Figure 1 Filtering process of systematic review in animal social network studies.

First of all, I excluded all papers that did not meet the criteria of behavioral ecology, ethology, and
evolutionary biology. These publications were mainly related to veterinary, agricultural, or medical
sciences. Additionally, genetic and molecular biological experiments were excluded from this

review, along with review articles, duplicates, and simulated data.

Secondly, I examined the abstracts of the papers and then excluded all methodological, multi-
species, and landscape-related research. The selection of papers was thoroughly inspected by
reading the full text of studies using the aforementioned four groups, and any non-relevant papers

were once again excluded.

251 papers remained after the filtering process, with 10 papers in group (1), 91 in group (2), 36 in
group (3), and 114 in group (4). The case studies of the thesis were not included in this review.
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From these 251 publications and 4 groups, the distribution of species in taxonomical classes is

presented in Figure 2, and the full list of species are presented in Appendix 1.

80

)]
o

Number of species
N
o

N
o

20
O ] .

Actinopterygii Arachnida Aves Chondrichthyes Insecta Mammalia Reptilia
Figure 2 The number of published social networks for various taxa between 1997-2023.

Due to the focus of this thesis, detailed discussions of mammals, birds, and insects are presented
here. The majority of species within the mammal group are primates, and among these 25 species,
14 belong to the family of Old-World Monkeys. Carnivores and Ungulates occupied the second
and third positions, comprising 12 and 9 species respectively. Furthermore, when examining bird
species, passerines were well-represented, with 14 out of 20 species falling under this category.
Lastly, among the 8 insect species, the Hymenoptera order accounted for 6 of them. In summary,
the diversity of species among the published papers from the year 1997 to 2023 in social networks

is relatively high. However, the availability of these studies is highly biased towards mammals,
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with a primary focus on monkeys. Among these 251 publications, the representation of reptiles,
insects, spiders, and fishes is limited to fewer than 10 species. These findings highlight a significant

opportunity for shaping future research in this field.

The thesis objects are based on the structure of this review. Each case study corresponds at least

to one of the four categories mentioned above.

2.6. Thesis objective

In the first part, my research is about modeling multiple social networks of animal species (Parus
major, Cynomys gunnisoni, Camponotus fellah, Spheniscus demersus) based on data from
collaborations, literature, and the field. As I mentioned above, | followed the idea in Chapter 1.5
about the four categories in social networks, which | defined: (1) Descriptive measures of the social
networks: patterns, dynamics, topology, and characteristics, and (2) The relationship between
changing environmental conditions and social network topology; for example, the group size or
effect of food availability on network structures. (3) How individual behavioral characteristics
affect network topology: castes behavior, foraging habits, and different rearing histories in
captivity, and (4) the influence of individual attributes on social network structures in individuals:

sex, age, and body size.

Second, | aim to compare these networks only on the scale of global and intermediate network
metrics (Network Centralization Index, Transitivity, Average Path Length, and Coefficient of
Variations in the Topological Importance Index) without edge type and direction to show the

fundamental differences between network topologies among species.

2.6.1. Thesis Question 1

How do the individual attributes, environmental, and behavioral conditions shape the social
network topologies in Great Tits (Parus major), Prairie Dogs (Cynomys gunnisoni), Carpenter
Ants (Camponotus fellah), and African Penguins (Spheniscus demersus)?

Concerning Great Tits, | sampled the data from the field in the winter season at Laczko-forras near
Veszprém. My aim in this study is to explore the winter behavior of wild Great Tits via social

network analysis by two different approaches: the proximity of individuals on the feeders, and
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agonistic interactions. | use Exponential Random Graph Models to calculate homophily between
sexes. Finally, I have only one summarized network in each case. These networks are time

aggregated.

Regarding Prairie Dog networks, | received collaboration data from Jennifer Verdolin from
Arizona, who has been working with this species for a long time. These 14 networks were
affiliative, based on undirected edges called ,,groom-kisses”. | use Node Label Permutation
Correlation Models to find the connection between Group Size, Territory Size (m?2), and food
availability (Biomass/m?), and three global measures like Network Centralization Index,
Transitivity, and Average Path Length. These network variables cover all the basic topological

traits of a social network properly.

In the case of Carpenter Ants, | collected six colonies and sixteen network data sets from the
literature by Mersch et al. from 2013. | focus in this study on the role of the queen in a colony and
how the working castes (Nurse, Forager, Cleaner) differ from each other in a network aspect. |
model only ten days of each colony. I create networks for every day and castes. | define two new
artificial categories called subnetworks among individuals: ants directly linked to the queen (Queen
Networks, Q) or not (No-Queen networks, NQ). I use Linear-Mixed-Models to test the relationship

between the castes and subnetworks and global network indices.

Finally, I collaborated with Budapest Zoo & Botanical Garden to collect behavioral data on African
Penguins. In this study, | focused on feeding events when | collected agonistic and food
competition network interactional data. The main question is, similarly to Great Tits, how does the
individual data affect the network positions. | defined agonistic and food competition categories to
describe individuals by networks. | assume that sex, age, and different rearing procedures shape
the network topologies in agonistic and food competition networks as well. | use the Node Strength
and Weighted Topological Importance local indices to measure network positions. As in Great Tits,
| use permuted correlations on local measures and Linear -Mixed -Models for categorical

comparisons. | work with 97 sampled days from April to November in 2022.
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2.6.2. Thesis Question 2

How do the social network structures compare to each other? Are there any shared or opposing
patterns between the network topologies?

To compare these strictly different species by networks in detail seems quite impossible. Too many
specific conditions appear, like taxonomy, wild-captive habitat, interaction definitions, and so on.
For that reason, | analyzed the edges without directions, only on a global scale with the same as
above the four basic network indices to cover the general topological traits of all social networks:
Network Centralization Index, Transitivity, Average Path Length, and Coefficient of Variation in
Topological Importance Index.l investigated the relationship between these network indices and
the Group Sizes of the species in case studies, to reveal the sensitivity of network topologies from
the sizes of the given populations These results may open new directions in the future study of

these species and the animal social network topic as well.

3. Methods

In this dissertation, | distinguish between two main categories within my datasets. The first
category includes all data with non-network, some external meaning (Chapter 3.1). This includes
individual-level variables such as sex, body size, and behavioral characteristics, as well as
environmental-level variables like territory size, food availability, and group size. The second
category comprises all network-related variables (Chapter 3.2), including network indices, nodes,
and edges. Given that each of my four case studies employs distinct data sampling methods, |
present them separately to facilitate interpretation (Chapters 3.2.1-3.2.5). Each case study
investigates the relationships between these two categories in various ways. Additionally, different
populations, networks, and associated questions often necessitate different statistical approaches.
Thus, in the subsequent Chapter 3.7, | introduce three different statistical models from existing

literature and previous studies for analyzing animal social networks.

3.1. Individual and environmental data

In ecology, individual attribute data (variables) can be collected on four scales (Anderberg, 1973):
(1) Nominal data. In this case, the categories are strictly discrete. The only operation meaningful
with its values is equality or inequality, and the frequency is allowed to be measured. Examples of

nominal scale are color, shape, or any text-based data. A specific case on the nominal scale is
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binary, which allows only two state levels, 0 or 1 (for example, presence-absence of an attribute).
(2) On the ordinal scale, the data have a strict order among the states, for example, the competition
results. On this scale, the >, < logical operators are allowed, but there are no numerical differences
between the categories for example between the first and second place in a running contest. (3)
Interval data scales allow calculating differences between categories, which can be interpreted
between defined limits (intervals). The most trivial interval scale is the temperature degrees. (4)
All operators can be used on the ratio scale. These values are continuous, like body size, speed, or
acceleration. Every calculation, statistic, and analysis depends on these data scales and should be

set carefully at the beginning of the research (Podani, 2000).

In this thesis the nominal scales appear in Carpenter Ants as caste definitions of behavioral
categories (Nurses, Foragers, Cleaners), sex of individuals, in African Penguins as rearing
procedures (handed, parental, mixed), the ratio scale as ages, and in all the network measures will

be presented in the following chapters (see data in Appendix 2).

3.2. Network data

The first step in network analysis is to define the edges in the network. Generally, the edge
definitions are based on animal interactions or associations (Castles et al., 2014). For example,
observing agonistic hierarchies requires aggressive interactions between individuals. Edges
represent the associations or interactions between nodes (individuals). Besides the accurate
collection of interaction data, the directions and edge weights are essential to set. Thus, they can
be either directed or undirected, and symmetrical (unweighted) or asymmetrical (weighted). After
collecting the field data, and before the analyses the next step is the conversion of datasets. Two
main input data types are used in common. First, the converted data table is called an adjacency
matrix or sociomatrix, where the columns and rows represent the same set of individuals, and the
matrix entries correspond to network edges. Second, the data table contains 3 columns. The first
and second columns are the individuals who are the participants in the given interactions. In
directed cases, the first column is the interaction source individual the second column is the target

individual and the third column is always the interaction weight column.
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3.2.1. Observational network data for wild Great Tits (Parus major)

| collected network data of Great Tits in the field. | distinguish two different social network models
via interaction and association types in this study. These multiple-edge definitions are based on the
interactions during foraging events. The first is the agonistic interactions between birds, which
contains every aggressive behavior displayed, chases, and pecks. The edges here are directed and
weighted by the frequency of the interactions. The second is the proximity associations. The edges
come from the co-occurrence of two birds simultaneously on the feeder for at least one second
(common space use associations). Edges in the proximity network are undirected but weighted by
frequency. | modeled two networks, agonistic and proximity, by summarizing the given edges over

the study period.

3.2.2. Collaboration network data for wild Gunnison’s Prairie Dogs (Cynomys gunnisoni)

In the study of this animal, | use all occurrences of greet-kissing interactions between individuals
as network edges. This interaction is an easily visible, distinct behavior that indicates group
membership (King, 1955, Travis and Slobodchikoff, 1993, Verdolin et al., 2014). The edges within
the networks are undirected and weighted. | received network data from Jennifer Verdolin, who

was the head of this study and | worked with her as a collaborator.

3.2.3. Literature network data for Carpenter Ants (Camponotus fellah)

This research is based on a published database on social networks of the ant species Camponotus
fellah (Mersch et al., 2013). | aim for a time window of the first ten days from 41 days in this study
(Mersch et al., 2013). This period is essential for the organization of the colony. The dataset
contains six colonies of Carpenter Ants. Edges are associations of proximity (Mersch et al., 2013,
Supplementary Materials). Therefore, they are not directed but weighted by frequency.

3.2.4. Observational network data for African Penguins (Spheniscus demersus)

Network data on African Penguins came from observing a population in the Budapest Zoo &
Botanical Garden. | define two categories of edges: (1) Agonistic interactions. Like Great Tits, it
contains all the aggressive behavior events like display, chase, and peck. (2) Food competition

interactions. Here, the individuals went for fish during feeding events, and the edges mean who
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steals or tries to steal the fish from another. Both network types, agonistic and food competition

are directed and weighted. The edge weight is the frequency of interactions.

All interaction and association types are summarized in Table 1.

3.2.5. Network data for comparative analyses

For this analysis, | converted daily networks to time-aggregated networks for Carpenter Ants and
African Penguin groups. Moreover, | dropped all of the networks with node numbers lower than 5,
to avoid sample size bias during analysis. That issue appeared only in Prairie Dog networks. Due
to the high level of heterogeneity among species and their networks, 1 only measured the networks
without directions and weights, regardless of the network types, focusing on the presence or
absence of a relation between individuals within groups to model and compare information flow

dynamics through the social networks.
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Table 1. Interactions, associations and edge definitions in case studies.

Species Interaction/ Edge Network Data source
association
Gunnison's Prairie  Greet-kisses ~ Undirected Greet-kiss Collaboration:
Dog Weighted (Grooming) Jennifer Verdolin
Carpenter Ants Touching Undirected ~ Communication  Literature: Mersch et
another Welghted al., 2013
individual’s
antenna
Great Tit Agonistic Directed Agonistic Field data Laczko-
display, chase, Welghted forras, Veszprém
peck
Feeding Undirected Proximity
together on the Weighted
feeder
African Penguin Agonistic Directed Agonistic Field data Budapest
display, chase, Welghted Z00 & Botanical
peck Garden, Budapest
Get the fish, Directed  Food competition
Weighted

steal the fish

from another, or

try.

3.3. Local network indices

3.3.1. Node Degree (D)

The simplest network index is the Node Degree, which is also called Degree. The Degree is the
number of direct edges an individual has:
i= z €;
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where ej is the number of edges connected to node i. The directional version of Degree is Out-
Degree, which is the source of the interaction, and In-Degree is a target of the same interaction
(Wasserman and Faust, 1994):

OD; =Y oe; and ID; =} ie;
where, oe; and ie; are the summary of directed edges connected to node i (Wasserman and Faust,
1994).

3.3.2. Node Strength (NS)

The weighted versions of Degrees provide a summary of the edge weights in each node. As |
mentioned above, in the case of Degrees, they can also be represented by directed indices, namely
Out-Strength and In-Strength, which represent the source and target of weighted edges from and
to a node, respectively (Borgatti et al., 2013):

NSL' = z we;

where we; is the sum of edge weights in node i, and
OSi = Z owe; and ISL = Z iW@i

are the directed versions with owe; and iwe; directional edges (Borgatti et al., 2013).

3.3.3. Topological and Weighted Topological Importance (TI,WI)

WI has demonstrated its suitability in modeling agonistic hierarchies and competitive scenarios
(Jordan et al., 2006). It assesses the centrality of individuals without taking edge directions into
account. Furthermore, WI has been established as a measure of the topological significance of node

I Within networks that incorporate weighted edges:

n N
_ Zm=1 ijl A, ji

n

wiIt

A

Here amji is m-step effect from a node i to node j, which in this case is 2 steps. Parameter a comes

from the formulaa = WTe” where ejjis the edge weight between nodes i and j, and u; represents the

4

sum of the edge weights of node i. It calculates the importance of an individual in the social network

and calculates how one individual’s effect spreads to others indirectly. The nonweighted case of

WI is TI, the Topological Importance Index (Jordan et al., 2006).
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3.4. Intermediate network indices

3.4.1. Transitivity (CC)

Also called the Clustering Coefficient. The CC gives information on how cliquish information is
spread in the network. High CC means the individuals are tightly linked to small groups with
relatively poor connections to each other (Borgatti et al., 2013). Low CC means a larger diversity
of edges, less cliquish structure, and information potentially spreading more freely in the network
(Borgatti et al., 2013). The CC of node (NCC) i equals the density of the subnetwork composed of
the neighbors of node i (Borgatti et al., 2013). This is the probability that its two neighbors j and k

will be directly linked to each other. It can be defined as:

2 x |E(Gy)]
NCC = =2 =L
" Dix(D;—-1)

where Gi is the subgraph composed of the nodes that are directly linked to node i, |E(Gi)| is the
number of edges in this subgraph and D; is the degree of node i. The whole network can be
characterized by the Transitivity, which is the average calculated NCC for all nodes (Borgatti et
al., 2013).

3.5. Global Network Indices

3.5.1. Network Centralization Index (NCI)

The NCI quantified the overall shape of the network. It shows how hierarchical are the given
networks (Wasserman and Faust, 1994). If the Degree for node i is Di and the largest Degree is
denoted by Dmax, then the value of NCI is:

Z{V Dmax - Di

NI=n_"Dxtv=2

The values of NCI range from 0 (every individual has the same number of connections) to 100
(perfect star, absolute hierarchy with one individual directed to all others). In the directed networks
there is a centrality for outgoing edges (Out-NCI) and for the ingoing edges to a node (In-NCI) as

well.
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3.5.2. Average Path Length (APL)

The APL between two nodes i and j in a network (dij) is the minimal edge number connecting them:

Xixjdij

APL =
2N

This quantifies how long (and slow) is the spread of information between any pair of individuals
in the network. It is averaged for all of the path lengths between each pair of nodes, and the path
length for nodes i and j is the minimum number of steps connecting them in the network (it equals
1 for directly linked neighbors) (Wasserman and Faust, 1994, Wey et al., 2008). This can be an
indication of the general speed of communication between individuals.

3.5.3. Coefficient of Variation in Topological Importance (CVi)

In addition to all the indices mentioned above, CV provides specific information about the social
network: the topological influence rates among individuals. It is calculated from the regular

coefficient of variation:

oT]
CVpp = —
T Uy

where o7 is the standard deviation of TI values, and p is the mean of all TI values in nodes.
All used network indices are summarized in Table 2.

Table 2 All used network indices in different topology levels

Togologx level Index name

Network Centralization Index (NCI)
Global Average Path Length (APL)
Coefficient of Variation of Topological Importance (CVT)

Intermediate Transitivity (CC)

Out-Degree (OD)

Local Out- and In- Strength (OS, 1S)
Topological Importance (TI)
Weighted Topological Importance (WI)
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3.6. Visualization

There are several tools available to visualize social networks. | used two softwares to model my
networks. First, | used UCINET software (Borgatti et al., 2002). A good feature of UCINET is the
efficient handling interface. The leading network indices can be quickly calculated. It can
transform, edit, normalize, and convert network data (Borgatti et al., 2002). In the last few years,
UCINET seemed old-fashioned and limited compared to the new tools, but the general SNA
calculations are accurate. UCINET is perfect for visualizing Stochastic Network Models (Borgatti
et al., 2002). Second, | visualized some of my networks via Gephi (Bastian et al., 2009). With
Gephi, the visualization can be more detailed. Considerable edge variability is available, like
thickness, color, and shape. In the case of directional networks, the arrows can be personalized as
well. The shape, size, color, and position can be easily changed with Gephi. It has the general SNA
methods as well, but it breaks down under complicated models. Compared to UCINET, the benefit
of Gephi is the Dynamic Network Model method to visualize the dynamic network as well (Bastian
etal., 2009). | used UCINET for the studies to model Prairie Dog and Carpenter Ant networks, and

Gephi to visualize Great Tit and African Penguin networks.

3.7. Hypothesis testing in studies of animal social networks

Statistical analysis of social network data presents multiple challenges. One of these, the non-
independent nature of the data excludes the assumptions of numerous statistical approaches. At
present, null models based on data randomizations are the strongest and most adaptable method for
network data characteristics (Farine and Whitehead, 2015). However, when comparing network-
level measures among populations or species, one potential solution involves studying replicated
populations. Each population would generate an independent network-level metric that can be
subjected to conventional statistical analysis (Farine and Whitehead, 2015). In this thesis, | present
three statistical models through the case studies: Linear-Mixed-Models (LMM), Exponential
Random Graph Models (ERGM), and Node-label Permutation Models (NLPM).

3.7.1. Exponential Random Graph Models (ERGM)

ERGM is a model family for calculating the processes between local network measures and
network configurations (Lusher et al., 2013). These network configurations can be any part of the

network structure, where the most basic is the Edge Formations (EF). The model computes
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potential edges between nodes as stochastic variables arranged within an adjacency matrix. The
response variables involve the probability of matching the observed network, while the explanatory
variables consist of various potential network characteristics (Silk and Fisher, 2017). The

mathematical formula of the ERGMs is:

P(N) = ce 6121(N)+0222(N)+"'9nzn(1v)

Here P(N) represents the probability of getting a given network, z is a network configuration, which
is weighted by 0 external parameter, which can be for example the biometrics of individuals, and
c is a constant parameter of the model. Edges in a network are formed considering the traits of the
connected nodes and the values of nearby edges. This also means that the ERGM framework takes
into account how edge values can depend on neighboring edges or other features of the network
structure. As a result, the ERGM framework deals with the way the network's structure emerges in
specific areas, which helps handle the issue of dependence related to this (Lusher et al., 2013). In
practice, we established ERGM in an R studio environment with packages stanet and ergm (Hunter
et al., 2008).

This model can be used for static and time-aggregated single networks. It was the reason why |

chose this method for modeling stochastic agonistic and proximity networks in Great Tits.

3.7.2. Linear- Mixed-Models (LMM)

| measured caste effects on global network metrics in six ant colonies with Linear-Mixed-Models
(McCulloch and Searle, 2004), where castes (Forager, Nurse, Cleaner) were set as fixed effects and
colony was set as random effect. Moreover, to identify and observe variations in network metrics
among three zookeeper rearing procedure categories, | employed LMM as well to tests across zoo-
housed African Penguin population. Here the rearing categories were used as fixed effect and age
categories were used as random effect. To build the models, the ’stats’ R package (R Core Team,
2012) was used.

3.7.3. Node Label Permutation Models (NLPM)

To deal with the problem of dependent characteristics of the network data we applied Node Label
Permutation Models in Prairie Dog and African Penguin measures. The package Animal Network

Toolkit Software or ANTs was created specifically for R studio users who are dealing with animal
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social networks (Sosa et al., 2020). This global package helps users to compute multiple things to

figure out different ways to measure networks as a whole, between pairs, and for individual parts.

The Null Model (NM) approach using permutation is one way to test hypotheses statistically. This
method lets users analyze data by making random sets from the actual data. They then compare the
measured value of interest, like a correlation coefficient, with a distribution of values made from
the random sets. This helps determine if the observed value is significantly different from what's
expected by chance. The NM approach can be used in different ways. In ANTS, this is possible by
adjusting the permutations based on the kind of data collected (either associations or interactions).
It also considers the research question — for instance, shuffling nodes when looking at individual
network measures or shuffling links when studying individual polyadic or overall measures (Sosa,
2020). In ANTSs, there are several statistical tests available under the 'stat’ group in the function
family. These tests encompass the correlation test ('stat. cor'), t-test (‘stat.t"). | performed permuted

correlation tests to look for relationships between the external variables and network structures.

In a study about Prairie Dogs, | ran the test between global metrics NCI, CC, and APL and
environmental conditions territory size, available biomass, and group size. On the other hand, we
ran these correlation tests on the local scale of the network in African Penguins as well. Here the
external variables were the individual data like sex, and age in captive conditions. In this case the
age variables were continous. From the local indices in this measure, we used NS and WI metrics
to calculate the network positions of penguins. No transformation is needed in these analyses. In
contrast to the Great Tit study, these measures are based on multiple social networks; therefore,

ERGMs were not used here.

3.8. Thesis Question 1 — Case studies

In addition to the results and conclusions of the analyses, another important objective of the
dissertation is to demonstrate the diversity of animal social analysis methods and the varying

availability of these methods for different species, all within the constraints of time and capacity.

| made an effort to present these opportunities with four distinctly different species, each with its
unique context and conditions. For example, in Case Study I, | explored the social structures of a
wild and rural habituated little songbird, the Great Tit group from Hungary. Moreover, |

demonstrated the influence of environmental conditions on the social topology of Prairie Dogs
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from Arizona. | examined caste differences via SNA in Carpenter Ants from Tel Aviv and for an
African Penguin species in a zoo. | conducted all these analyses using three different statistical
approaches to demonstrate the various ways that can be employed when dealing with animal social

networks.

3.8.1. Case Study I: Great Tit (Parus major)

Study site and data sampling

The idea behind this study arose from a gap in knowledge regarding the winter season behavior of
wild great Great Tits. Since 2011, the HUN-REN-PE Evolutionary Ecology Research Group has
been conducting nestbox monitoring work in both rural and urban habitats within Veszprém city,
Hungary with approximately 200 artificial nestboxes in all areas around the city. These data
sampling methods were initially focused on the breeding season and the breeding behavior of Great
Tits. During the winter season, these songbirds form mixed-species flocks for foraging purposes.
As a result, the appearance and availability of food patches play a crucial role in Great Tits
throughout the entire winter period (Nakamura and Shindo, 2001). To observe behavioral
interactions among individual Great Tits, | installed an artificial bird feeder (see Appendix 3)

within a rural forest area in Veszprém known as Laczko-forras (Figure 3) in Veszprém.
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Figure 3 Study site and the artificial feeder (red circle, Veszprém, Hungary, 47°05°38°°N,
17953°0’E).

28



The observation period lasted from November 7, 2021 to February 22, 2022. | sampled 37 days in
these months focusing on the active foraging period on a given day. The behavior of birds was
recorded by 4 GoPro cameras hidden inside the feeder (see Appendix 3). | recorded two periods of
a day for one hour. The morning session started at 09:00 AM, and the afternoon session started at

14:00. In summary | recorded 74 foraging sessions and 296 hours with four cameras.
Data

In every social network study, the identification of individuals is inevitable. Alongside the nest box
monitoring, the research group mentioned above has also been conducting bird ringing since 2011.
Therefore, | used their color ring identifications to gather network data from the birds. Each metal -
ringed bird has a specific combination of color rings to aid in distinguishing the individual within
the video recordings (Appendix 2 (1)). All ring and individual data were accessible within the
OpenBiomaps database of the HUN-REN-PE Evolutionary Ecology Research Group (Appendix 2
(1)). I was looking for network-shaping effects of sex, age, and tarsus length attributes. I choose
tarsus length as an indicator of body size, which was used in many studies, for example Kolliker et
al. (1999). From the 230 relational data, | modeled two time-aggregated networks, based on the
two types of edges: agonistic network and proximity network. In this study, | calculated Degree
(D) for proximity network, and Out-Degree (OD) for agonistic network as a network metric. All

of the relational and network data are summarized in Table 2.
Hypotheses and statistical models

In Case Study I, | posited two primary hypotheses: (1) The sex, age, and tarsus length of individuals
have an impact on the Edge Formations (EF) and Out-Degree configurations (OD) of the agonistic
network, implying that these individual data factors shape the agonistic network's topology. (2)
The sex, age, and tarsus length of individuals also influence the EF and D configurations of the
proximity network. To test my hypotheses, | conducted Exponential Random Graph Models
(ERGM) to estimate the external factors' influence on these time-aggregated networks (Hunter et
al., 2008). A previous study concerning brown capuchin monkeys (Cebus apella) and hamadryas
baboons (Papio hamadryas) used ERGM to quantify the effects of individual attributes on EF (Lutz
et al., 2019). The findings indicated a tendency for individuals within these species to form edges
with others possessing similar attributes, and these EF were sensitive to age differences (Lutz et
al., 2019).
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3.8.2. Case Study II: Prairie Dog (Cynomys gunnisoni)

Study site and data sampling

Gunnison's Prairie Dogs are diurnal and socially active species of ground squirrels, inhabit
exclusively the grasslands of the Colorado Plateau (Hall and Kelson, 1959). The data used for the
analyses conducted in this study were derived from behavioral and vegetation observations
gathered from two colonies (HS and CC) from March to August 2004. These data pertain to three
distinct, non-overlapping populations: CCI, HSI, and HSII. Both colonies were situated within the

municipal boundaries of Flagstaff, Arizona (see details in Verdolin et al., 2014).
Data

In this research, previously published social networks (Verdolin et al., 2014) are employed. These
networks were established based on all instances of greet-kissing, aiming to assess the impact of
aboveground resource biomass on shaping overarching network characteristics. To provide a
succinct overview, the networks were formulated by including adult and yearling males and
females, encompassing all potentially reproductive individuals. These networks were unweighted
and undirected. Verdolin et al. (2014) previously showed that greet-kissing constitutes a
dependable behavior, suitable for constructing social networks within the context of Gunnison's
Prairie Dogs. To provide a comprehensive depiction of the networks, | calculated the Network
Centralization Index (NCI) to capture the overall structure of networks, taking into account all
connections that individuals hold within the group. Additionally, | evaluated the Transitivity (CC)
as an indicator of the likelihood that an individual's immediate neighbors are interconnected. | also
computed the Average Path Length (APL) for the minimal number of links connecting two
individuals (Table 2). All the modeled networks were weighted and undirected. Multiple ecological
variables were used in this study. Aboveground foraging Biomass (biomass/m2) was calculated
during a previous study on these Prairie Dog populations. This research focused on exploring the
relationship between resources and social structure (Verdolin, 2007). Territory Size (TS), measured
in square meters (m?), was determined through the utilization of a fixed kernel density estimator,
relying on the positional data of social group members. Subsequently, the mean dry weight of food
plant samples was derived by procuring samples of 100 cm? from fifteen arbitrarily selected 100
m? quadrants quadrats within each territory. Finally, the Group Size (GS) variable was calculated

by taking simply as the number of individuals within groups.
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Hypotheses and statistical models

In this study, | focused only on the global and intermediate network levels. My hypothesis aimed
to explore the relationship between ecological variables (group size, territory size, and biomass/m2)
and selected network metrics (NCI, CC, and APL). To answer my question, | used Node Label

Permutated Models to correlate the variables.

3.8.3. Case Study III: Carpenter Ant (Camponotus fellah)

Study species and data

My research relies on information from a published database about social interactions among ants
of the species Camponotus fellah (Mersch et al., 2013). This particular ant species is commonly
found in dry and warm regions of North Africa and the Middle East. They have different types of
worker ants, each with its own tasks. Younger ones are Nurses, middle-aged ones are Cleaners,
and older ones are Foragers. Their roles depend on age rather than size, which is called age
polyethism. When worker ants are isolated, they lose weight, change their behavior (moving more),
and have a shorter lifespan. This happens because they eat less when they're they are alone, which
is a result of losing social interactions. One key ants interact is by sharing food through trophallaxis,
which helps the group stay united. | was focusing on the first 10 days of a 41-day experiment
(Mersch et al., 2013) because this initial period seems to be very important for how the ant colony

organizes itself.
Network models

In the networks of this study networks, nodes represent ant individuals and edges represent
associations by proximity (Mersch et al., 2013, Supplementary Materials). Associations are not
directed and not signed but weighted by interaction frequency (data also exist for the duration of
interactions, not used here). | studied six ant colonies with three castes: Nurses (N), Foragers (F),
and Cleaners (C). I modeled networks for each day for each colony and castes as well (Appendix
4 (3). In addition, | established two further groups, individuals linked to the Queen (Q), and those
not linked to the queen (NQ). I labeled these new groups as subnetworks, and they were modeled
with networks for each day and colonies as well. | measured these temporal network topologies to

follow colony dynamics during this short period. In summary, | modeled and studied 360 time-

31



ordered networks (6*6*10= six colonies* whole networks- N, F,C castes - Q, NQ subnetworks*
10 days).

Hypotheses and statistical models

After all the network models across all colonies castes and subnetworks types, my focus shifts to
comparing the castes using global and intermediate network measures (NCI, CC, and APL). |
employed Linear-Mixed-Models to identify the castes and subnetwork effects on metrics above.
Each statistical analysis was conducted using R Studio software (R Studio Team, 2020). The main
hypotheses in this study: The castes and subnetworks are the predictors of the NCI, CC, and APL

indices. I set colony categorical variable as random factor in this models.

3.8.4. Case Study IV: African Penguin (Sphensicus demersus)

Study site and data sampling

The sampling of behavioral data took place at the penguin enclosure of the Budapest Zoo &
Botanical Garden in, Budapest, Hungary. The enclosure covered a space of approximately 15 m x
15 m meters, without a specific geometric shape, and included a central pool. Adjacent to the
enclosure, there was an elevated viewing point that offered a comprehensive view of the feeding
area, where the animals assembled before feeding. The penguins were fed twice daily. The African
Penguin group consisted of 29 members, comprising 16 males, and 13 females. Nearly all the birds
were outfitted with distinct combinations of colorful identification bands on their wings, enabling
individual recognition. In situations where birds lacked these bands, unique physical characteristics
allowed for identification. One bird had experienced blindness from a young age. The ages of the

birds ranged from 1 year to 28 years.
Data

All the individual data variables are listed in Appendix 2 (4), and were obtained from the Zoo's
database. | rounded up juveniles for 1 year, exhibiting different gray fledgling colors and distinct
behavior from mature birds, other age variables were rounded to whole years as well. In addition,
to measure the effect of juveniles | established a categorical variable for age with two classes: adult

and juvenile The caretakers of the Zoo defined three rearing categories: reared by parents, reared
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by zookeepers, reared by both parents and zookeepers. I used parent, hand, and mix names for these

variables, respectively.

The observation took place between the 8th of April and 18th of November, 2022. The morning
feeding started between 9:30 and 10:00, depending on the season, while the afternoon feeding
started at 16:00. The observation started 30 minutes before the feeding and lasted until no more
fish remained, and the keeper left the area; therefore, the observation lasted approximately 45 min
in total, and | merged two feeding events into one sampling day. During the study, 97 sampling
days were recorded in total. My study focused on agonistic food competition behaviors; therefore,
just the following interactions were recorded (Eggleton and Siegfried, 1979): displays, chasing
events, pecks, successfully stealing fish, going for the same fish, and successful and unsuccessful
fish stealing. | presented a summary of the interactions and edge definitions about penguins in
Table 3.

Table 3 Definition of networks and edges in the Case Study IV

Network Interactions Edge weight 1 Edge weight 2

Type

Edge weight 3

Agonistic: Directed and

behavior with weighted

the absence of

Point threat, gape,
sideways stare,
alternate stare ,chase,
peck

Bird A exhibits an
aggressive display
to bird B

Bird A'is
chasing bird B

Bird A pecks or
starts a fight with

without pecking  Bird B

food
Food Directed and
competition: weighted

Behaviour with
the presence of
food

Fight for the fish at the
same time and win the
fish, unsuccessfully try
to steal the fish,
successfully try to steal
the fish

Bird A attempts to
steal a fish from
bird B, but does not
succeed

Bird A attempts
to steal a fish
from bird B, and
succeeds or
wins the fight
for the food and

eats the fish

In agonistic networks, the edge weights were determined based on the categorical range of physical
effort invested by individuals, ranging from (1) displays, where no physical contact is exhibited, to

(2) chasing, where there is no physical contact but more aggression invested, and finally to (3)
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actual fights. Regarding food competition networks, the edge weights were determined based on
the success of getting food more effectively than others, ranging from (1) attempting to steal to (2)

successfully stealing or winning the fish.
Network data

| constructed an agonistic network and a food competition network for each of the 97 days (194).
In this study, the network positions were determined by two network metrics. First, | utilized the
Out- and In-Node Strength (OS and IS) (Squartini et al., 2013), and then | calculated the OS and
IS differences (DI = OS - IS). It can be used to calculate aggression and food competition rates
expressed by signed integers or zero. Strong aggressors and competitors are assigned large positive
numbers, while non-aggressive and weak competitor individuals are assigned small negative
numbers. Second, | measured Weighted Topological Importance (WI), which proved to be the most
appropriate for modeling agonistic hierarchies and food competition conditions (Jordan et al.,
2006). The DI index was used to calculate aggression rates with edge directions among individuals.

However, W1 indicated the centrality positions of individuals without considering edge directions.
Hypotheses and statistical models

This study aimed to determine which individual variable significantly affect network topoligies in
African Penguins. My hypotheses were as follows: (1) Network indices are determined by rearing
categories in both agonistic and food competition networks. (2) Sex and age discrete categories
significantly differ from each other, and continuous age variables significantly correlate with

network index values in both agonistic and food competition networks.

| employed the Linear-Mixed-Models to assess the rearing procedure effect on the DI and WI
network indices within both network types. To calculate sex and age categorical differences I used
NLPM t-test. For the correlation tests, | conducted NLPM correlations to uncover relationships
between variables. In cases where DI or WI exhibited significant differences or correlations, |

identified these individual variables as influential factors shaping the given network structure.

All of the hypotheses over the case studies are summarized in Table 4.
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Table 4 All of the set hypotheses concerning Thesis question 1 distinguished into the three category

of the systematic review in Chapter 2.5. To facilitate interpretation, these hypotheses have been

assigned capital letter codes for further use.

Category Case Hypothesis ID
study
Individual  attributes 1 The sex, age, and tarsus length of individuals have an H1
and network structures impact on the EF and OD configurations of the agonistic
network, implying that these individual factors shape
the agonistic network's topology.
The sex, age, and tarsus length of individuals also H2
Individual ~attributes | influence the EF and D configurations of the proximity
and network structures network.
Environmental 1] NCI, CC, and APL correlate with GS, TS, and H3
conditions and network biomass/m? environmental variables
structures
Individual behavior and 111 The global and intermediate network indices, NCI, CC, H4
network structures and APL differ significantly between castes and
subnetworks.
Individual behaviorand IV Network indices are determined by rearing categoriesin  H5
network structures both agonistic and food competition networks.
Sex and age discrete categories significantly differ from H6
individual  attributes each other, and continuous age variables significantly
v correlate with network index values in both agonistic

and network structures

and food competition networks.
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3.9. Thesis Question 2 — Comparison of global network properties of the case studies

In all of the social networks created, global and intermediate network metrics were calculated. The
networks were modeled as undirected and unweighted, and calculations were performed using
RStudio software (RStudio Team, 2020). All networks were time-aggregated within a given case
study window. Each network's NCI (Network Centralization Index), CC (Transitivity), APL
(Average Path Length), and CV (Coefficient of Variation in Topological Importance Index) were
calculated using RStudio, with the R script for TI values available on GitHub

(https://github.com/hidasandris/Network-scripts).

Considering the potential influence of group sizes within the networks, Group Size (GS) was
included as a new variable among the global metrics. Multivariate analysis was performed to
measure all social networks at the global and intermediate levels (including GS), encompassing 2
Great Tits, 11 Prairie Dogs, 6 Carpenter Ants, and 2 African Penguin time-aggregated social

networks. All global and intermediate indices were calculated for each network.

For the analysis, only 11 Prairie Dog networks were used, as networks with fewer than 5 nodes
could cause a sample size bias and were considered outliers and thus removed from the data. The
focus was solely on the presence of any connection, regardless of interaction and association types
(agonistic, proximity, food competition). To ensure comparability among various networks, the

index data were normalized, constraining values between 0 and 1.

Standardized Principal Component Analysis (PCA) (Karl, 1901) was performed on the data matrix
of the results of 126 objects and 5 variables based on the 21 networks in 4 species. Subsequently,
an effort was made to distinguish network indices and GS data into clusters using Hierarchical
Clustering (HC) with the single-link method (Sneath, 1957) to observe how social network data

can be separated based on species.

4. Results: Thesis Question 1 — Case studies

4.1. Case Study I: Great Tit (Parus major)

All of the ERGM results are summarized in Table 5. The results show that tarsus length, as an
indicator of body size has a negative significant effect on EF, D and OD network configurations in

networks. However, sex has not shown any significant influence on any network configurations in
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both networks. Besides the tarsus length, the ages of the birds negatively affected the OD and EF

only in agonistic networks. The network graphs are visualized on Figure 4.

Table 5 Results of ERGMs in the case study I, Great Tits (Parus major).

External variable Network variable ~ Network Estimated P value
parameter
‘Sex  OD  Agonistic -0.089 0521
EF 0.141 0.269
Age oD -0.141 0.026
EF 0.123 0.043
Tarsus length [cm]  OD -0.091 <0.001
EF -0.312 0.005
Sex D Proximity -0.064 0.735
EF 0.109 0.51
Age D -0.051 0.505
EF 0.133 0.054
Tarsus length [cm] D -0.091 <0.001
EF -0.312 0.005
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Figure 4 Visualization of social networks in Great Tits via Gephi software. The agonistic (left) and
proximity (right) network are shown. Orange nodes represent the female, and green nodes the male
birds. The edge colors in the agonistic network show the affector node in the given edge, and node
sizes show the age of individuals.The proximity network has no direction, therefore, black edges
represents the undirected connections between nodes The thickness of edges represents the edge

weights.

4.2. Case Study II: Prairie Dog (Cynomys gunnisoni)

14 social network graphs were modeled (example: Figure 5), and the results of the statistical
analyses are presented in Table 6. The CC remains relatively stable in this case, exhibiting no
significant relationship with GS, TS, or available Biomass within the territory. However, the NCI
exhibits a statistically significant negative correlation, while the APL displays a statistically
significant positive correlation with both GS and TS. Conversely, no significant correlation was

observed between Biomass and the network indices.
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Figure 5 An example of one Gunnison’s paririe dog ,,greet-kiss” affiliative social network. Nodes
represent the individuals, and edges are positive ,,greet-kiss” interactions among them. These

networks are undirected and unweighted.

Table 6 Results of NLPM correlation tests between environmental and network variables in Prairie

Dog grooming social networks.

Environmental Network Estimated P value
variable variable parameter
Group size NCI -0.766 <0.001
cC -0.296 0.131
APL 0.856 <0.001
Territory size NCI -0.692 0.001
cC -0.259 0.233
APL 0.511 0.049
Biomass NCI -0.138 0.313
cC -0.004 0.466
APL 0.061 0.397

4.3. Case Study III: Carpenter Ant (Camponotus fellah)

The individual centrality (TI) values of nodes change over time (Figure 6). At the level of nodes,

there is extreme turnover in the identity of the most and least central ants, but the variability of Tl
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indices shows quite consistent trends over the colonies. All colonies become more dense during
these 10 days. My analysis showed significant differences in the NCI and CC values among castes
when compared to the reference category (C values): networks of F and N castes have significantly
higher NCI and CC values. For APL, the C castes' networks show higher values than those of the

F and N castes (Table 7). | visualized networks in one day in colony | on Figure 6

16
14

1,2

02

Figure 6 TI values for all nodes over 10 days in Carpenter Ants.
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Figure 7 Social network graphs of Carpenter Ants of colony I in day 1 in all network, caste and
subnetwork levels. Node-colors: blue-Whole Network, red-Nurses, green-Foragers, purple-

Cleaners, yellow-Queen-subnetwork, lightbrown-No-Queen subnetwork.

Table 7 Caste and Subnetwork effect on NCI, CC, and APL global and intermediate network
indices First column represents the estimated coefficients of the model. The results of the predictors
(columns) are from bivariate LMM models The stars represents the categorical rates of p-values: *
= p<0.05; ** = p<0.01; *** = p<0.001.

Castes and subnetworks NCI CC APL

C (reference level) 11.151 7.785 1.157

F 2.672** 5.064*** -0.085***
N 2.314* 0.987* -0.070***
NQ -1.411 0.037 0.083***
Q -0.377 -0.294 -0.017
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4.4. Case Study IV: African Penguin (Spheniscus demersus)

The network graphs of the first day in both cases as an examples are visualized on Figure 8.
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Figure 8 Visualization of agonistic (left) and food competition (right) networks on day 1 in African
Penguins via Gephi software (green nodes: juvenile (age < 1 year), blue nodes: adult male, red

nodes: adult female, edge color represents the source of the interaction).

| calculated local network indices WI and DI. All three, rearing history, sex, and age individual
data showed a shaping effect on network positions. Table 8 presents the results of NLPM t-

correlations between age and network indices.

Table 8. Results of NLPM correlation tests between individual age and network variables in

African Penguin social networks.

External variable ~ Network variable ~ Network ~ Correlation P-value
coefficient
]| Agonistic -0.324 <0.001
Age Wi -0.449 <0.001
]| Food competition  0.03 0.106
Wi -0.049 0.099
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The results show that during foraging, the age of individuals does not affect the success of the food
competition network. However, a negatively significant correlation was found in the agonistic

network between the age and network variables.

Moreover, DI values were significantly higher for males than females in both networks, but female
WI values in food competition networks were higher than male WI values. In the tests of age
category comparisons, juvenile DI was significantly higher in agonistic and food competition
networks as well. However, adult W1 in the food competition network was also higher than juvenile
WI, meanwhile, juvenile WI was significantly higher in agonistic networks. All results are

summarized in Table 9.

Table 9 NLPM t-test results in African Penguin agonistic and food competition networks between

SeXes.
Network Differences Network T parameter P value
Index

Agonistic  Male > Female DI -14.576 <0.001
Food Male > Female -6.719 <0.001
competition

Agonistic ~ Male > Female Wi -5.801 <0.001
Food Male < Female 7.218 <0.001
competition

Agonistic  Adult < Juvenile B]| -18.664 <0.001
Food Adult < Juvenile -4.148 <0.001
competition

Agonistic  Adult < Juvenile Wi -21.229 <0.001
Food Adult > Juvenile 7.218 <0.001
competition
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Finally, the rearing procedures also shaped the network positions significantly. In agonistic
networks mix and parental-rearing categories have significantly higher DI values than hand-rearing
categories (Table 10). Mix has also higher DI values than hand-rearing categories as well (Table
10). In food competition networks parent and mix values were also higher than hand-rearing values
(Table 10).

Table 10 Rearing effect on DI and WI network indices The first column represents the estimated
coefficients of the model. The results of the predictors (columns) are from bivariate LMM models

The stars represent the categorical rates of p-values: * = p<0.05; ** = p<0.01; *** = p<0.001.

Network Rearing type DI Wi
Agonistic Hand (Reference) 6.182 1.167
Parent 1.245 0.432%***
Mix 4.290*** 0.286***
Food Hand (Reference) 0.121 0.535
Competition Parent 0.269 0.429***
Mix 0.287 0.352***

4.5. Conclusion — Thesis Question 1 — Case studies

Concerning the relationship between individual data and network structures four hypotheses were

answered.

H1 and H2: The sex, age, and tarsus length as body size indicators of individuals have an impact
on the Edge Formation and Out-Degree configurations of the agonistic network, implying that

these individual data shape the agonistic network's topology.

Sex had no effect on network structures on both proximity and agonistic social networks as well.
However, age was considered a good predictor of Out-Degree and Edge Formation in the agonistic
network as a negative effect. Tarsus length was also a good predictor variable in both proximity

and agonistic networks negatively.
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H3: NCI, CC, and APL correlate with Group Size, Territory Size, and Biomass/m? environmental

variables.

Global network index relationships were found in testing the hypothesis of Gunnison’s grooming
social networks.Available Biomass on the group territories has not shown any relationship with
network indices. Territory Size with NCI exhibited a negative correlation and with APL a positive
correlation. NCI and APL showed negative correlations with the Group Size values. In summary,
NCI and APL about the Group and Territory Sizes can be used as a predictor of group structures

on global and intermediate network levels.

H4: The global and intermediate network indices, NCI, CC, and APL differ significantly between

castes and subnetworks.

Concerning the relationship between individual behavior and social structure, castes and
subnetwork differences emerged in the answers to the hypothesis in the case of Carpenter Ants.
Caste effects were found in NCI and CC, where forager (F) and nurse (N) castes exhibited higher
NCI values than cleaner (C) castes. Opposite results appeared in APL, where C values were higher.

Moreover, the subnetworks No-Queen related (NQ) APL values were higher than C APL values.

H5: Network positions are significantly different between rearing categories in both agonistic and

food competition networks.

The network positions, characterized by DI and W1 indices, were influenced by the rearing history
of individuals. Within agonistic networks, individuals raised in mixed environments exhibited a
significantly higher level of DI compared to those reared by parents or through hand-rearing
processes. Conversely, within food competition networks, the influence of rearing type appeared
less pronounced, with no significant differences observed between rearing categories. Regarding
WI, both parent and mixed rearing categories showed significantly higher results than the hand-

reared category in both agonistic and food competition networks.
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H6: Sex and age discrete categories significantly differ from each other, and continuous age
variables significantly correlate with network position values in both agonistic and food

competition networks.

Male-biased differences were found in DI indices in both agonistic and food competition networks.
However, WI indices were also higher in males in agonistic networks, but in food competition
networks females had higher WI. That is, DI and WI-generated network positions were highly
sensitive to the sex of the individuals. Concerning age categories, juveniles reached the highest DI
and WI values in agonistic networks, but adults were more central (WI) in food competition
networks. DI values in food competition networks were still juvenile-biased. Like the sex variables,
age also serves as a robust predictor of network positions in this context. The correlations between
age as a continuous variable and the DI and WI indices further substantiate these findings. These
correlations reveal a significant relationship that favors younger penguin individuals,

demonstrating a negative correlation.

5. Results: Thesis Question 2 — Comparison of global network properties of the case

studies

Analyses of 2 Great Tits, 11 Prairie Dogs, 6 Carpenter Ants, and 2 African Penguin time-
aggregated social networks are demonstrated here. Except for Carpenter Ants, these are the first
modeled social networks in their respective contexts. My study here focuses solely on the global
and intermediate scales of network topologies presented above, describing trends and connections

between network indices among the case study species.

Numerous global and intermediate network indices have been introduced in Chapter 2.5.1 (NClI,
CC, APL, CV). Furthermore, these indices were assessed across all study species in this section.
Given the considerable variance observed among network samples within species, our current
objective primarily involves delineating trends and patterns, abstaining from drawing enduring
conclusions. Before embarking on any comparisons, | conducted a Principal Component Analysis
(PCA) to calculate the correlations among all the aforementioned indices and Group Size (GS) of

all studied species (Figures 9-10).
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Figure 9 Results of Spearman rank correlation using 4 network indices and GS values from 21

time-aggregated networks. The correlation coefficients range between red (1) and blue (-1).
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Figure 10 Biplot of standardized PCA with two dimensions based on 4 indices and GS values in

21 social networks.
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The PCA results in terms of GS, negative correlations were observed between the NCI and CV1
indices (Figures 11 and 14). However, GS has not exhibited any visible trends in relation to CC
(Figure 12), nor APL (Figure 13). Moreover, NCI showed no strong negative relationship (corr >
0.5, Figure 9) with CC (Figure 15), and APL (Figure 16). CC showed negative correlations with
CVq (Figure 19) and APL (Figure 18) as well. Positive relationship pattern appeared between APL

and CVq indices as well (Figure 20). NCI and CVT also exhibited a strong positive relationship
trend (Figure 17).
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Figure 11 Scatterplot of Group Size (GS) and Network Centralization index (NCI) within study
species.
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Figure 12 Scatterplot of Group Size (GS) and Transitivity (CC) within study species.
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Figure 13 Scatterplot of Group Size (GS) and Average Path Length (APL) within study species.
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Figure 14 Scatterplot of Group Size (GS) and Coefficient of Variation in Topological Importance

(CVm) within study species.
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Figure 15 Scatterplot of Network Centralization index (NCI) and Transitivity (CC) within study
species.

50



2.5+
o
species
20- @) African Penguin
|
"y A Carpenter Ant
< .
B GreatTit
Prairie Dog
1:5+
2R A
o- B
0.0 0.2 0.4 0.6
NCI

Figure 16 Scatterplot of Network Centralization index (NCI) and Average Path Length (APL)

within study species.
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Figure 17 Scatterplot of Network Centralization index (NCI) and Coefficient of Variation in

Topological Importance (CVi) within study species.
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Figure 18 Scatterplot of Transitivity (CC) and Average Path Length (APL) within study species.
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Figure 19 Scatterplot of Transitivity (CC) and Coefficient of Variation in Topological Importance
(CVm) within study species.
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Figure 20 Scatterplot of Average Path Length (APL) and Coefficient of Variation in Topological

Importance (CV) within study species.

In the hierarchical clustering single-link process, the four species were separated into two clusters
strictly at a height of about 2. One cluster included the two Great Tit networks, while the other
cluster comprised all remaining networks (Prairie Dog, African Penguin, and Carpenter Ant)
(Figure 25). At a height of 1.5, three additional clusters were established: one containing all Prairie
Dog networks, another with only one African Penguin network, and a third with all Carpenter Ant
networks along with an African Penguin network. Overall, based on hierarchical clustering using

the single-link method, Great Tit network indices appeared to be the most distant from the others.

However, it must be emphasized that these results only describe these four specific cases. The
methodology of the four cases is very different, making it difficult to draw any concrete and far-
reaching conclusions from such a comparison. | merely attempted to compare them in the simplest

way possible based on the data I collected.
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Figure 21 Dendogram of single link hierarchical clustering based on euclidean distances between

networks using 5 network indices and Group Size (GS) values. Four clusters are separated by
colored boxes.

6. Conclusion — Thesis Question 2 — Comparison of global network properties of the case

studies

Findings for Thesis Question 2: How do the social network structures compare to each other? Is
there any shared or opposite pattern between the network topologies?

The results of the principal component analyses reveal visible trends in network indices across
species. By observing pairwise correlations through PCA (Figures 9-10) for GS, NCI, CC, APL,
and CV metrics, it becomes evident that species in case studies can be strictly separated from a
social network structure perspective. The negative correlation trends between NCI, CV, and GS
can be observed in Figures 11 and 14. Notably, GS has not shown any trends with CC and APL,
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which indicates that information may flow independently of the number of given populations. As

could be expected, with higher CC scores, APL tended to be lower, because more connections

mean "faster" pathways within networks in general.

In addition, species can be distinguished based on each index. Great Tits exhibited the most

"longest” networks, with the the highest APL scores. Additionally, these networks were less

transitive and had the highest CVV1 score. Notably, the network data of Great Tits established a

strictly distinct cluster in hierarchical clustering, separate from the others. Concerning Prairie Dog
networks, they had the most centralized (NCI) networks with moderated CC, APL, and CV

scores. It is important to note that prairie dogs were the species with the most networks and the

highest variability in the size of these networks, ranging from 6 to 20.

The comparison of metrics among species are visualized in Figure 26.
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Figure 22 Visualization of NCI, CC, APL, CV, and GS metric scores amoung case study species,

where arrows with HIGH label represents the high scores, LOW label represents the low scores of

the given metric.
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7. Discussion

In recent decades, various methodologies have been employed to assess the social behavior of
animals. While some approaches are centered on individuals, aiming at their surroundings and
conduct, the network terms seek to quantify interactions or affiliations within a group of animals.
Social Network Analysis (SNA) emerges as a valuable tool to describe and compute interaction or
association patterns between individuals. The period spanning from the late 1990s to 2023 has
witnessed the publication of over a thousand research articles featuring social networks in animal
species, particularly in the context of animal behavioral ecology. Upon a closer look, it becomes
evident that these investigations have predominantly concentrated on mammals, particularly
primates, whereas other taxonomic groups remain under-represented. Multiple criteria can be used
to classify these papers. In this study, I have refined my focus to relevant publications categorized
into four groups: 1) offering a general description of animal social networks devoid of specific
hypotheses or statistical tests, 2) probing the impact of individual attributes on network structures
like sex, age, and body size, 3) assessing the influence of individual behaviors on network
topologies like castes in ants, and 4) investigating the impact of environmental conditions on
network structures. Besides the considerable number of publications, statistical models are also
represented with high diversity. Two specific statistical models were used here. The Exponential
Random Graph Models (ERGMs) can be employed to estimate the impact of an external factor on
the probability of specific network configurations, such as Edge Formations or Degrees (Silk and
Fisher, 2017). Meanwhile, Node Label Permutation Models (NLPM) utilize random permutations
to mitigate the issues of dependent data within graphs (Sosha et al., 2020). In this thesis, | applied
both of these methodologies to assess the influence of individual data on the topologies of social
networks in Great Tits and African Penguins. Furthermore, | employed to examine the associations
between environmental conditions and global as well as intermediate indices in the study of Prairie
Dogs.

In my research in Case Study I, | observed outgoing aggressive interactions (OD) and the sensitivity
of Edge Formations (EF) inwild Great Tits (Parus major) during the winter season. | noted a higher
intensity of aggression exhibited by younger birds. Interestingly, no age effects were discerned in
the proximity network. Surprisingly, sex differences did not affect any network metrics on any
network type. This observation could potentially indicate the lack of significance of sex-related

attributes during the non-breeding season. Additionally, I identified a negative impact of tarsus
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length on all network configurations, implying that the assumption of younger birds being more
socially active than their older counterparts may not hold. These findings collectively suggest that
Great Tits uphold complex social systems even during the winter season. This study first explored

agonistic and proximity social networks in Great Tits during the non-breeding season.

| modeled 14 grooming social networks in Gunnison's Prairie Dog (Cynomys gunnisoni) using
collaborative data (Case study Il). I aimed to find out the potential impact of environmental factors
on network topologies. | assessed the network topology using global and intermediate metrics: the
Network Centralization Index (NCI), Clustering Coefficient or Transitivity (CC), and Average Path
Length (APL). These metrics were contrasted with environmental variables such as Group Size,
Territory Size, and available Biomass per unit area. Several studies measured familiar
environmental conditions' influences on network structures. Agonistic networks were examined for
family size, which is analogous to Group Size in blue tits (Cyanistes caeruleus) (Garcia et al.,
2023). In blue tits, these authors found that the Degree and Density of the networks remained
independent of family size. Another study explored changes in resource availability affecting
network connections in wood ants (Formica lugubris) (Burns et al., 2021). Moreover, Wilson et
al. (2015) identified how changes in habitat influenced Network Density in Trinidadian guppies
(Poecilia reticulata). My research in Gunnison's Prairie Dog social dynamics revealed the critical
role of Group Size. As Group Size increased, the flow of information within the network slowed
down, as evidenced by an increase in Average Path Length (APL). Simultaneously, the
centralization of information decreased with larger group sizes. This phenomenon could potentially
lead to a slower response to predatory threats or the transmission of essential information within
the group. My findings were supported by a negative correlation between APL values and territory
sizes. This suggests that not only group size, but also the shape and size of the territory,
significantly influence the social network's topology. Surprisingly, the availability of biomass

resources did not exhibit any relationship with network metrics.

In Case Study IlI, I investigated how the individual behavior attributes affect the network on global
and intermediate topology levels in Carpenter Ants (Camponotus fellah). To accomplish that, |
constructed 60 daily proximity social networks from six colonies (10 networks per colony) of
Carpenter Ants (Camponotus fellah) based on data from the literature (Mersch et al., 2013).
Moreover, | set behavioral variables as individual worker castes, which were the worker castes
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within colonies: Nurses (N), Foragers (F), and Cleaners (C). In addition, | established two extra

subnetworks based on a direct link with the queen: Queen-Networks (Q) and No Queen-Networks

(NQ).

The distinctive topological variations of caste subnetworks became evident through the outcomes.
Specifically, the Forager and Nurse castes exhibited a more centralized topology comparison to the
Cleaner networks. The same pattern appeared in the case of Transitivity (CC), Cleaners maintained
less “cliquish” networks than Foragers and Nurses. However, Cleaners exhibited the longest
pathways (APL) among the castes. This observation could reflect the significance of swift
information transmission between Nurses attending to offspring or searching for food in Foragers.
Only NQ subnetworks showed longer pathways (APL) than Cleaners. Suggesting, that this

phenomenon leads to a deceleration in information flow in the absence of the queen.

In Case Study IV, | investigated and presented the primary shaping factors of the topologies of
agonistic and food competition social networks in zoo-kept African Penguins (Spheniscus
demersus). Previous studies showed that the high rate of aggressive behavior, including even nest
usurpation is a key component of the group dynamics and structure by affecting breeding success
(Traisnel and Pichegru, 2018). Moreover, another study demonstrated male-biased territory
aggressive displays (Figel et al., 2023). However, no study discussed agonistic behavior patterns
focusing on a whole group via networks. | found that high aggression rates emerged by juveniles
(less than 1 year old, with gray feathers) within the group. Both network position indicator (DI and
WI1) indices were the highest in juveniles in agonistic networks. Moreover, the males occupied
more central (WI) and more aggressive (DI) network positions than females, which supports the

observations in the wild based on the results of Figel et al. (2023) mentioned above.

Different results were exhibited in food competition networks. Earlier research has delved into
individual data characteristics, specifically boldness, and how they forecast food competition-
related foraging behavior in the natural habitat. Notably, these studies revealed that boldness
influences foraging success in females (Traisnel and Pichegru, 2019). In contrast, my study focused
on modeling food competition social networks within a distinctly different zoo environment. The
primary aim is to determine whether individual indicators play a role in shaping the food
competition network dynamics among penguins. In the context of my study, it was observed that

juveniles displayed higher positive values in the disparity between won and lost food-related fights
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(referred to as DI) compared to adults. However, their W1 was lower, indicating a scenario where
juveniles engage in fewer but more impactful foraging competitions compared to adults. To
investigate the broader influence of age on network dynamics, | employed permuted correlations
involving continuous age variables instead of simply categorizing individuals into juvenile and
adult groups. My findings revealed that both the rate of aggression (DI) and centrality (WI) were
negatively correlated with age, specifically within agonistic networks. Remarkably, food
competition networks displayed no connections with age, thereby extending the previously
mentioned results. This suggests that while juvenile individuals influence the dynamics of food

competition, the impact of age on food competition dynamics among adults is negligible.

Additionally, to contribute to conservation efforts within zoo environments, | explored the effect
of rearing procedures on the two aforementioned networks. This human-mediated activity directly
interacts with a particular population, as discussed by Williams et al. (2016). For instance, the
behavior of captive parrots was found to be influenced by their rearing history. Parrots that were
hand-reared and kept in solitary conditions exhibited fewer normal behaviors compared to their

parent-reared counterparts within a group (Williams et al., 2016).

In the context of my study, individuals with a combination of hand-rearing and parental-rearing
procedures displayed the highest levels of aggression, centrality, and central food competitiors, as
evidenced by elevated DI and W1 values in agonistic networks, and higher W1 values in food
competition networks. Conversely, those subjected solely to hand-rearing exhibited the lowest
values. These findings can offer valuable guidance to zookeepers, assisting them in providing more

attentive care for African Penguins in captivity.

Each of the presented case studies shows the significance and value of assessing animal social
networks through diverse perspectives and methodologies. Nevertheless, while the tools of social
network analysis hold promise for investigating and quantifying animal populations, limitations
tend to arise primarily within wild populations. In such scenarios, individuals may conceal
themselves or prove challenging to track, potentially resulting in data collection with noticeable
gaps. The exponential advancement of technology, however, has ushered in fresh prospects for

data collection and the observation of animal behavior, surpassing previous capabilities.

The limitations of SNA methods are nearly as varied as the multitude of species that exist on Earth

(different space, time, environment, number of individuals, etc.). Using the networks without
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direction, sign, or weight, only the absence or presence of interactions can be a way to conduct
comparisons across species without delving into deeper intricacies. Another important issue is the
observation periods. In my Case Study, | examined a winter period from November to February
2021 for Great Tits, a summer period from March to August 2009 for Prairie Dogs (Case study I1),
and a breeding period from April to November in 2022 for African Penguins (Case study 1V). Data
encompassed Carpenter Ants observed for 10 days (Case Study IIl). Given that these are
invertebrates with significantly shorter lifespans, | deemed their "season” in life comparable. By
utilizing seasonally time-aggregated networks, | selected Group Sizes (GS) of the presented species
above and global and intermediate network metrics to characterize network topology (NCI, CC,
APL, CVq). These metrics formed the basis for cross-species comparisons in social behavior

network studies.

Cross-species sociality measures appeared in the same mixed group, for example in Savi's bats
(Hypsugo savi) and Kuhl's pipistrelles (Pipistrellus kuhlii), when they demonstrated occurrences
of social bonds between species (Ancillotto et al., 2014). Another study discussed two distinct
social network properties between Grevy’s zebras and onagers (Sundaresan et al., 2007). However,
these observations were somehow connected in time, space, or with specific conditions. In this
dissertation, | first made efforts to compare strictly distinct and independent randomly chosen
studies across species using SNA methods. The network metrics in general among species showed

strong correlations with each other.

Among all of these five indices, a negative correlation emerged between the NCI index and GS,
indicating how hierarchical characteristics within populations can increase in smaller groups, as
observed in my model species, Prairie Dogs, and African Penguins. Another index, CV, which
can be used as an indicator of influence within a population between individuals, also exhibited a
similar negative correlation with GS. This and the positive relationships between NCI and CVr
provides further evidence to support the assumption that smaller groups tend to maintain a more
centralized social environment.These patterns of centrality was previously studided, for example
Feral Goats (Capra hircus) were observed, where smaller groups has individuals with higher
centrality, and bigger groups tended to been unstable and collapsed (Stanley and Dunbar, 2013).
Suprisingly, GS has not showed any trends with CC and APL, which indicates that information
may flow independently from the number of the given populations.
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Based on network intermediate and global topologies, the social systems of the Great Tits exhibited
the most distinctive characteristics from each other. From the perspective of information flow, APL
shows the speed, and CC describes the "blockades,” NCI gives the ratio of "leadership,” and CVq
demonstrates how individuals influence each other (Wasserman and Faust, 1994). Great Tits
represent the most slowest social system, while the African Penguins and Carpenter Ants showed
the opposite pattern.The indices related to social hierarchy exhibit non-linear patterns, except the
positive relation with each other. The ant colonies and penguins represent the less hierarchical
social structures with higher cluster rates. The variety of influences on individuals within the
networks emerged in Great Tits but diminished in penguins and ants. The ant and penguin
similarities in multiple indices are interesting. The outlier results of CC, APL and CVr in ants
could be interpreted as a reflection of a high level of eusociality, but in penguins these index
patterns may indicate a contrast between wild and captive states in these groups. Under natural
conditions, the larger available space, specific foraging strategies, and relatively infrequent contact
with other group members can lead to more sparse (low CC, and high APL) and more random (high
variety of socially important group members, CV ) social network patterns compared to controlled
environments in captivity with a steady food supply and absence of predators. However, in light of
other measures, explaining these patterns is hindered by the lack of more data and information

about other eusocial species. Further exploration through detailed studies in the future is necessary.

This thesis, along with the main questions it addresses, highlights the importance and relevance of
animal social network approaches in several taxa, in a comparative way (as much as possible), for
numerous social-related behavioral and ethological inquiries. In addition to the network-shaping
factors of individual data, behavioral characteristics, and changing environments discussed here,
more areas within animal science await exploration through social networks for example with a

major focus on conservation efforts or human-wildlife conflicts.
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8. Summary

My research aims to use network analysis methods to examine the external influencing factors on
the social behaviors of four different species - the Great Tit (Parus major), Gunnison Prairie Dog
(Cynomys gunnisoni), Carpenter Ant (Camponotus fellah), and African Penguin (Spheniscus
demersus). The primary focus was on uncovering external factors that influence the topology of
their social networks under different variable conditions. Furthermore, | compared the network
models among species to identify similar or different trends and patterns among them. |
demonstrated that individual age negatively correlates with network indices indicating the level of
aggression (OD, DI) in both Great Tits and African Penguins. The sex of individuals did not
influence the social network topology of Great Tits, but in the case of African Penguins, males
were more aggressive and efficient foragers within the networks. Tarsus length, as an indicator of
body size, seemed to be a good predictor for Great Tits in both proximity and agonistic networks,
where smaller birds showed higher aggression and affinity to interact with others. Among the
global network indices of Prairie Dogs, | found a negative correlation between NCI and Group
Size, NCI and Territory Size, and a positive relationship between APL and Group Size, as well as
APL and Territory Size. | did not find a relationship between Biomass and network index variables.
The castes and subnetworks of Carpenter Ants also showed significant differences. The NCI and
CC values of Cleaners were lower than Foragers and Nurses, but their APL values were higher.
Additionally, the No-Queen related subnetwork had higher APL values than the Cleaner caste. In
the second part of my study, | compared the above-mentioned relational networks at global and
intermediate network topological levels. Great Tits formed networks with long peaks. In contrast,
African Penguins had the most clustered and shortest networks, while Carpenter Ants exhibited
intermediate values between the two. Prairie Dog networks did not show visible trends, with data
points showing large variations when comparing indices. Regarding NCI, a non-linear pattern
emerged among species with high centrality and moderate transitivity (CC) in ants, and low NCI
in birds with low clustering. CV1j emerged as a unique indicator here, derived from food web
methodology, reflecting the diversity of positional importance of peaks in the networks, which was

highest in Great Tits and lowest in African Penguins.
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9. Osszefogalas

Kutatdsaim célja a kapcsolathaldzatelemzési modszerek felhasznaldsa, hogy megvizsgaljam,
milyen kiils6 befolyasold tényez6i vannak négy kiilonbozé faj — széncinege (Parus major),
Gunnison prérikutya (Cynomys gunnisoni), harcias lohangya (Camponotus fellah) és afrikai
pingvin (Spheniscus demersus) — tarsas viselkedéseinek. Osszehasonlitottam a haldzati modelleket
a fajok kozott, hogy azonos vagy kiilonboz6 trendeket és mintdkat fedezzek fel kozottiik.
Kimutattam, hogy az egyedek kora mind a széncinegéknél és az afrikai pingivneknél is negativan
korrelal az agresszié mértékét mutatdo haldzati indexekkel (OD, DI). Az egyedek neme nem
befolyasolta a széncinege tarsas halozatanak topoldgidjat, de az afrikai pingvinek esetében a himek
agresszivebbek voltak és hatékonyabb taplalékszerzOk a halozatokban. A csiidhossz, mint
testméretindikator, jo befolyasold tényezdnek bizonyult a széncinege mind kozelségi, mind az
agonisztikus halozataiban, ahol a kisebb madarak nagyobb agressziot és hajlandosagot mutattak
masokkal valo interakciora. A prérikutya globalis halézati mutatoi koziil negativ korrelaciot
talaltam a NCI és a csoportméret kozott, a NCI és a terliletméret kozott, €s pozitiv kapesolatot az
APL és a csoportméret kozott, valamint az APL és a terliletméret kozott. Nem talaltam kapcsolatot
a biomassza ¢s a haldzati mutatdvaltozok kozott. A harcias lohangyak kasztjai és alhalézatai is
szignifikans kiilonbségeket mutattak. A takaritok NCI, CC értékei alacsonyabbak voltak, mint a
taplalékszerzo és utddgondozo kasztokéi, de APL értékei magasabbak. Ezen feliil a kirdlyndhoz
nem kapcsolédo egyedek alhalozatanak APL értékei nagyobbnak bizonyultak, mint a takaritod
kasztéi. A kutatdsom masodik részében Gsszehasonlitottam a fent emlitett kapcsolati hal6zatokat
globalis és koztes haldzat-topologiai szinteken. A széncinegék hosszu csucsok kozotti uthosszal
rendelkezé halozatokat hoztak 1étre. Ezzel szemben az afrikai pingvinek a legzstfoltabb és
legrovidebb halozatokkal rendelkeztek, mig a harcias 16hangyak a kettd kozotti értékeket vettek
fel. A prérikutya halézatok nem mutattak lathat6 trendeket, az adatpontok nagy szorast mutattak
az indexek Osszehasonlitasakor. Az NCI tekintetében nem linedris mintazat alakult ki a fajok kozott
magas centralitdssal és mérsékelt tranzitivitassal (CC) a hangyaknal, és alacsony NCI a madaraknal
alacsony klaszterezddéssel. A CVr itt egyediilallo mutatoként jelent meg, ez a taplalékhalozatok
modszertanabol szarmazik. Tiikrozi a cstcspontok poziciondlis fontossaganak valtozatossagat a

halozatokban, amely a legmagasabb volt széncinegeknél és a legalacsonyabb afrikai pingvineknél.
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13. Appendix

Appendix 1. Published social networks for 4 groups of species: (1) Descriptive measures of social
networks, including indices and dynamics.(2) Measures examining the effects of changing
environmental conditions on social network topology, such as seasonal changes, temperature,
habitat, food availability, and infections. (3) The influence of individual social behavior
characteristics on social network positions. (4) The influence of individual biometric variables on

social network positions.
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Species Scientific name Group
T bestoow  Bostaurns @)

sulphur-crested cockatoo Cacatua galerita 2
Gambel's quail Callipepla gambelii 4
feral goat Capra aegagrus hircus 2
elk Cervus canadensis 2
spotted hyeana Crocuta crocuta 2
Konik horse Equus ferus caballus 4
onager Equus hemionus khur @)
forest elephant Loxodonta cyclotis 2
European badger Meles meles 4
Australasian gannet Morus serrator 3)
Tasmanian devil Sarcophilus harrisii (4)
long-tailed tits Aegithalos caudatus 4
giant panda Ailuropoda melanoleuca 4
lizard Ameiva corax 4
small-clawed otter Aonyx cinerea (@))]

Geoffroy's spider monkey Ateles geoffroyi 3)(4)
brown spider monkey Ateles hybridus @)

fungus beetle Bolitotherus cornutus (2)(3)
bumble bees Bombus impatiens @)
sulphur-crested cockatoos Cacatua galerita 4
California quail Callipepla californica 4



common marmosets
Carpenter Ant
house dog
Alpine ibex
blacktip reef sharks
reef Sharks
white sharks
Colombian white-faced
capuchin
brown capuchin monkey
red deer
Gould's wattled bats
vervet monkey
colobus monkey
old world monkey
old world monkey
Eurasian jackdaws
saltwater crocodile
spotted hyeana
blue tit
Gunnison's Prairie Dog
common carp
vampire bat
downy woodpecker
tree skink
big brown bat
Przewalski's horse
Grevy's zebra
feral horse
common waxbill

common waxbill

Callithrix jacchus
Camponotus fellah
Canis lupus familiaris
Capra ibex
Carcharhinus melanopterus
Carcharinus perezi
Carcharodon carcharias

Cebus capucinus

Cebus Sapajus apella
Cervus elaphus
Chalinolobus gouldii
Chlorocebus pygerthrus
Colobus angolensis ruwenzorii
Colobus gelada
Colobus guereza
Coloeus monedula
Crocodylus porosus
Crocuta crocuta
Cyanistes caeruleus
Cynomys gunnisoni
Cyprinus carpio
Desmodus rotundus
Dryobates pubescens
Egemias triolata
Eptesicus fuscus
Equus ferus przewalskii
Equus grevyi
Equusferus caballus
Estrilda astrild
Estrilda astrild
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red-bellied lemur
collared flycatcher
wood ant
red junglefowl
threespine stickleback
giraffe
field cricket
Savi's bat
African elephant
stump-tailed macaque
long-tailed macaque
Japanese macaque
rhesus macaque
black macaque
bonnet macaque
barbary macaque
Eastern grey kangaroos
yellow-bellied marmot
acorn woodpecker
Mongolian gerbil
prairie vole
elephant seal
reef manta ray
brown-headed cowbird
banded mongoose
house mouse
Bechstein's bat
Natterer's bat
lemon shark
cichlid
cichlid

Eulemur rubriventer
Ficedula albicollis
Formica lugubris
Gallus gallus
Gasterosteus aculeatus
Giraffa camelopardalis
Gryllus campestris
Hypsugo savii
Loxodonta africana

Macaca arctoides

Macaca fascicularis umbrosus

Macaca fuscata
Macaca mulatta
Macaca nigra
Macaca radiata
Macaca sylvanus
Macropus giganteus
Marmota flaviventer
Melanerpes formicivorus
Meriones unguiculatus
Microtus ochrogaster
Mirounga angustirostris
Mobula alfredi
Molothrus ater
Mungos mungo
Mus musculus musculus
Myotis bechsteinii
Myotis nattereri
Negaprion brevirostris
Neolamprologus pulcher

Neolamprologus pulcher
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Western black-crested
gibbon
hihi
giant noctule bat
degu
white-tailed deer
trapjaw ants
Otago skink
Australian snubfin dolphin
killer whale
mountain goat
sharks
European rabbit
ground squirrel
chimpanzee
African lion
leopard
baboon
baboon
Great Tit
weaver
Wood warbler
red colobus monkey
Kuhl's pipistrelle
wire-tailed manakin
black-capped chickadee
mountain chickadee
Trinidadian guppie
wasp
Hanuman langur

common racoon

Nomascus concolor

Notiomystis cincta
Nyctalus lasiopterus
Octodon degus
Odocoileus virginianus
Odontomachus hastatus
Oligosoma otagense
Orcaella heinsohni
Orcinus orca
Oreamnos americanus
Orectolobus maculatus
Oryctolagus cuniculus
Otospermophilus beecheyi
Pan troglodytes
Panthera leo
Panthera pardus
Papio anubis
Papio ursinus
Parus major
Philetairus socius
Phylloscopus sibilatrix
Piliocolobus tephrosceles
Pipistrellus kuhlii
Pipra filicauda
Poecile atricapillus
Poecile gambeli
Poecilia reticulata
Polistes gallicus
Presbytis entellus

Procyon lotor
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Yunnan snub-nosed
monkey
Sichuan snub-nosed
monkey
wasp
peacock blenny
capuchin monkey
small spotted catshark
white-breasted nuthatche
Guiana dolphin
Australian humpback
dolphin
squirrel monkey
African social spider
meerkat
wild boar
bluetongue lizard
sleepy lizard
Indo-Pacific bottlenos
dolphin
common bottlenose dolphin
Columbian ground squirrel
ruffed lemur

Galapagos sealion

Rhinopithecus bieti

Rhinopithecus roxellana

Ropalidia marginata
Salaria pavo
Sapajus apella
Scyliorhinus canicula
Sitta carolinensis
Sotalia guianensis

Sousa sahulensis

Saimiri sciureus
Stegodyphus dumicola
Suricata suricatta
Sus scrofa
Tiliqua adelaidensis
Tiliqua rugosa

Tursiops aduncus

Tursiops truncatus
Urocitellus columbianus
Varecia variegata

Zalophus wollebaeki
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Appendix 2
Individual attributes, environmental, and behavioral data of Case studies: (1) Great Tit (Parus
major), (2) Gunninson’s Prairie Dog (Cynomys gunnisoni), (3) Carpenter Ant (Camponotus

fellah), (4) African Penguin (Spheniscus demersus)

)
ID Sex Age Tarsus length
|cm|
apch male 3 19.20
apcl male 1 20.00
apcy male 2 20.40
apkc male 3 20.00
bbba female 1 18.20
bfba female 1 19.20
blba female 1 19.30
capp female 2 20.50
chaz male 1 20.70
cfba female 1 19.90
cfza female 2 20.30
cpaz female 1 19.00
craz female 2 20.10
crka female 4 20.00
csal female 1 19.50
frna male 4 20.50
frsa female 2 20.10
fsra male 4 20.20
kral male 1 19.20
krba female 1 19.90
Isal female 1 19.30
nanr male 1 20.40
nasc male 1 19.00
nasr male 1 20.30
nbra female 3 20.10
ncka female 3 19.90
panr female 2 19.60
pcna female 3 19.30
pcsa female 3 19.90
pfar female 2 19.50
plar female 1 20.00
praz female 2 19.40
rkba male 2 19.70
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rira male 5 19.80

rpaz male 2 19.80

rsha female 1 20.20

rzba female 1 19.60

zacl female 4 19.20

zalc male 3 20.80

zazc male 4 19.50

zfar male 1 19.40

zfra female 3 18.30

zrba male 1 21.10

(2)

Network Colony  Network size Territory Biomass/m?
CcC 3 20 214294  8.05
HS2 2 16 1170.96  5.60
HS2 3 16 1211.02  4.27
CcC 2 11 1450.76  5.53
HS1 1 10 1586.29 3.74
HS1 3 9 1161.82 2.75
HS2 4 8 493.18 0.43
CcC 1 8 146150 7.76
CcC 4 8 1729.00 7.62
HS2 5 7 997.39 3.09
HS1 5 6 550.12 3.79
HS1 4 4 559.59 5.59
HS2 1 4 442.25 1.36
HS1 2 3 375.18 3.60
3

Colony Caste  Size

I T 113

I N 25

I F 53

I C 31

I T 131

] N 70

I F 22

] C 35

I T 160
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Il N 54
I F 59
Il C 43
v T 102
v N 38
v F 25
v C 35
\ T 152
\Y N 67
\ F 39
\Y C 41
VI T 164
VI N 81
VI F 46
VI C 35

(4)
ID Sex Age Age Rearing

class

AUGUSTUS f 3 adult parent
BARNA f 23 adult mix
BERISZLO f 3 adult mix
BOLDIZSAR f 2 adult parent
BPFEH f 27 adult parent
BRIAN m 1 juvenile mix
CHARLIE f 15 adult hand
CRYSTALL m 16 adult parent
DOMOTOR f 3 adult parent
ELZA m 8 adult mix
EUME m 10 adult parent
FANNI f 4 adult mix
HILDA m 1 juvenile mix
A\A4 m 22 adult hand
IZAURA m 1 juvenile mix
JOY f 15 adult hand
JUNIOR m 9 adult parent
KAMILLA m 17 adult hand
MAZSOLA f 10 adult parent
POFATLAN m 10 adult parent
PULCSI f 4 adult mix
RICO m 8 adult mix
ROSIE f 7 adult mix
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SANYI m 1 juvenile mix
SISU m 6 adult mix
SKIPPY m 6 adult mix
STAN m 2 adult parent
SUMMER f 2 adult parent
ZENO m 18 adult parent
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Appendix 3 The used feeder with 4 GoPro cameras, and a demonstration of color codes on Great
Tits in Case Study |

Al

\
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Appendix 4 Modelled social networks in Case Studies
(1) Visualization of social networks in Great Tits via Gephi software. From left to right- agonistic

and proximity networks. Orange nodes represent the female, and green nodes the male birds. The
edge colors in the agonistic network show the interaction source node in the given dyad, and node

sizes show the age differences between individuals.

(2) Visualization of 14 social networks in Prairie Dogs via Ucinet & Netdraw software. Nodes

represnets the individuals and edges represents the greet-kiss interactions between them.
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(3) Visualization of social networks in Carpenter Ants via Ucinet & Netwdraw software. The
graphs represent the first day of all colonies in all Castes and Subnetworks. From left to right and
up to down colonies I-VI. Node color codes: blue- whole network, red-nurses, green- forages,

purple-cleaners yellow-queen-related, olive-no queen-related
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(4) Visualization of agonistic (left) and food competition (right) aggregated networks African
Penguins via Gephi software. Color codes: green-juvenile (age < 1 year), blue-adult male, red-adult

female. The edge color represents the source of the interaction.
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